736 research outputs found

    Benchmarking Nonequilibrium Green's Functions against Configuration Interaction for time-dependent Auger decay processes

    Full text link
    We have recently proposed a Nonequilibrium Green's Function (NEGF) approach to include Auger decay processes in the ultrafast charge dynamics of photoionized molecules. Within the so called Generalized Kadanoff-Baym Ansatz the fundamental unknowns of the NEGF equations are the reduced one-particle density matrix of bound electrons and the occupations of the continuum states. Both unknowns are one-time functions like the density in Time-Dependent Functional Theory (TDDFT). In this work we assess the accuracy of the approach against Configuration Interaction (CI) calculations in one-dimensional model systems. Our results show that NEGF correctly captures qualitative and quantitative features of the relaxation dynamics provided that the energy of the Auger electron is much larger than the Coulomb repulsion between two holes in the valence shells. For the accuracy of the results dynamical electron-electron correlations or, equivalently, memory effects play a pivotal role. The combination of our NEGF approach with the Sham-Schl\"uter equation may provide useful insights for the development of TDDFT exchange-correlation potentials with a history dependence.Comment: 7 pages, 3 figure

    Midgap states and charge inhomogeneities in corrugated graphene

    Get PDF
    We study the changes induced by the effective gauge field due to ripples on the low energy electronic structure of graphene. We show that zero energy Landau levels will form, associated to the smooth deformation of the graphene layer, when the height corrugation, hh, and the length of the ripple, ll, are such that h2/(la)1h^2 / (l a) \gtrsim 1, where aa is the lattice constant. The existence of localized levels gives rise to a large compressibility at zero energy, and to the enhancement of instabilities arising from electron-electron interactions including electronic phase separation. The combined effect of the ripples and an external magnetic field breaks the valley symmetry of graphene leading to the possibility of valley selection

    VUV-Vis optical characterization of Tetraphenyl-butadiene films on glass and specular reflector substrates from room to liquid Argon temperature

    Full text link
    The use of efficient wavelength-shifters from the vacuum-ultraviolet to the photosensor's range of sensitivity is a key feature in detectors for Dark Matter search and neutrino physics based on liquid argon scintillation detection. Thin film of Tetraphenyl-butadiene (TPB) deposited onto the surface delimiting the active volume of the detector and/or onto the photosensor optical window is the most common solution in current and planned experiments. Detector design and response can be evaluated and correctly simulated only when the properties of the optical system in use (TPB film + substrate) are fully understood. Characterization of the optical system requires specific, sometimes sophisticated optical methodologies. In this paper the main features of TPB coatings on different, commonly used substrates is reported, as a result of two independent campaigns of measurements at the specialized optical metrology labs of ENEA and University of Tor Vergata. Measured features include TPB emission spectra with lineshape and relative intensity variation recorded as a function of the film thickness and for the first time down to LAr temperature, as well as optical reflectance and transmittance spectra of the TPB coated substrates in the wavelength range of the TPB emission

    Real-time dynamics of Auger wavepackets and decays in ultrafast charge migration processes

    Full text link
    The Auger decay is a relevant recombination channel during the first few femtoseconds of molecular targets impinged by attosecond XUV or soft X-ray pulses. Including this mechanism in time--dependent simulations of charge--migration processes is a difficult task, and Auger scatterings are often ignored altogether. In this work we present an advance of the current state-of-the-art by putting forward a real--time approach based on nonequilibrium Green's functions suitable for first-principles calculations of molecules with tens of active electrons. To demonstrate the accuracy of the method we report comparisons against accurate grid simulations of one-dimensional systems. We also predict a highly asymmetric profile of the Auger wavepacket, with a long tail exhibiting ripples temporally spaced by the inverse of the Auger energy.Comment: 11 pages, 7 figure

    Equilibrium and time-dependent Josephson current in one-dimensional superconducting junctions

    Full text link
    We investigate the transport properties of a one-dimensional superconductor-normal metal-superconductor (S-N-S) system described within the tight-binding approximation. We compute the equilibrium dc Josephson current and the time-dependent oscillating current generated after the switch-on of a constant bias. In the first case an exact embedding procedure to calculate the Nambu-Gorkov Keldysh Green's function is employed and used to derive the continuum and bound states contributions to the dc current. A general formalism to obtain the Andreev bound states (ABS) of a normal chain connected to superconducting leads is also presented. We identify a regime in which all Josephson current is carried by the ABS and obtain an analytic formula for the current-phase relation in the limit of long chains. In the latter case the condition for perfect Andreev reflections is expressed in terms of the microscopic parameters of the model, showing a limitation of the so called wide-band-limit (WBL) approximation. When a finite bias is applied to the S-N-S junction we compute the exact time-evolution of the system by solving numerically the time-dependent Bogoliubov-deGennes equations. We provide a microscopic description of the electron dynamics not only inside the normal region but also in the superconductors, thus gaining more information with respect to WBL-based approaches. Our scheme allows us to study the ac regime as well as the transient dynamics whose characteristic time-scale is dictated by the velocity of multiple Andreev reflections

    Quantum Hall effect in carbon nanotubes and curved graphene strips

    Get PDF
    8 págs.; 7 figs. ; PACS number s : 73.22. f, 73.43. f, 75.75. aWe develop a long-wavelength approximation in order to describe the low-energy states of carbon nanotubes in a transverse magnetic field. We show that in the limit where the square of the magnetic length l= c eB is much larger than the C-C distance times the nanotube radius R, the low-energy theory is given by the linear coupling of a two-component Dirac spinor to the corresponding vector potential. We investigate in this regime the evolution of the band structure of zigzag nanotubes for values of R l>1, showing that for radius R≈20 nm a clear pattern of Landau levels starts to develop for magnetic field strength B 10 T. The levels tend to be fourfold degenerate, and we clarify the transition to the typical twofold degeneracy of graphene as the nanotube is unrolled to form a curved strip. We show that the dynamics of the Dirac fermions leads to states which are localized at the flanks of the nanotube and that carry chiral currents in the longitudinal direction. We discuss the possibility of observing the quantization of the Hall conductivity in thick carbon nanotubes, which should display steps at even multiples of 2 e2 h, with values doubled with respect to those in the odd-integer quantization of graphene. © 2007 The American Physical Society.The financial support of the Ministerio de Educación y Ciencia Spain through Grants Nos. FIS2005-05478-C02- 01/02 and INFN 05-14 is gratefully acknowledged. F.G. acknowledges funding from the European Union under Contract No. 12881 NEST. S.B. and P.O. acknowledge the support of the grant 2006 PRIN “Sistemi Quantistici Macroscopici-Aspetti Fondamentali ed Applicazioni di strutture Josephson Non Convenzionali.” E.P. was also supported by INFN under Grant No. 10068.Peer Reviewe

    Time-dependent quantum transport with superconducting leads: a discrete basis Kohn-Sham formulation and propagation scheme

    Get PDF
    In this work we put forward an exact one-particle framework to study nano-scale Josephson junctions out of equilibrium and propose a propagation scheme to calculate the time-dependent current in response to an external applied bias. Using a discrete basis set and Peierls phases for the electromagnetic field we prove that the current and pairing densities in a superconducting system of interacting electrons can be reproduced in a non-interacting Kohn-Sham (KS) system under the influence of different Peierls phases {\em and} of a pairing field. An extended Keldysh formalism for the non-equilibrium Nambu-Green's function (NEGF) is then introduced to calculate the short- and long-time response of the KS system. The equivalence between the NEGF approach and a combination of the static and time-dependent Bogoliubov-deGennes (BdG) equations is shown. For systems consisting of a finite region coupled to N{\cal N} superconducting semi-infinite leads we numerically solve the static BdG equations with a generalized wave-guide approach and their time-dependent version with an embedded Crank-Nicholson scheme. To demonstrate the feasibility of the propagation scheme we study two paradigmatic models, the single-level quantum dot and a tight-binding chain, under dc, ac and pulse biases. We provide a time-dependent picture of single and multiple Andreev reflections, show that Andreev bound states can be exploited to generate a zero-bias ac current of tunable frequency, and find a long-living resonant effect induced by microwave irradiation of appropriate frequency.Comment: 20 pages, 9 figures, published versio
    corecore